Jürgen Kaftan

# SPS-Beispiele mit SIMATIC S7

Aufgaben und Lösungen



Jürgen Kaftan SPS-Beispiele mit SIMATIC S7

Jürgen Kaftan

# SPS-Beispiele mit SIMATIC S7

Aufgaben und Lösungen

2., korrigierte Auflage

Vogel Buchverlag

Jürgen Kaftan

| 1967–1971 | Ausbildung zum Elektromeister              |
|-----------|--------------------------------------------|
| 1971-1973 | Facharbeiter im                            |
|           | Elektromechaniker-Handwerk                 |
| 1973–1975 | Studium zum Staatl. gepr. Elektrotechniker |
| 1975–1977 | Tätigkeit als Techniker                    |
| 1977-1978 | Meisterschule, Elektromechanikermeister    |
| 1979–1992 | Berufsbildungswerk Nürnberg für Hör- und   |
|           | Sprachgeschädigte, Ausbildungsmeister      |
| 1985–1992 | Kursleiter für SPS-Steuerungen in der      |
|           | Beruflichen Fortbildung (BFH) Hör- und     |
|           | Sprachgeschädigter                         |
| 1985–1992 | Kursleiter für SPS an der Handwerkskammer  |
|           | Nürnberg                                   |
| 1992–1995 | IHK Elektrogerätebau-Systemschulungen      |
|           | (Geschäftsführer)                          |
| seit 1995 | Leiter der Bildungseinrichtung             |
|           | IKH-Systemschulungen für Hard- und         |
|           | Software in Weißenburg und Roth            |
|           | (Mittelfranken)                            |
|           |                                            |

Jürgen Kaftan ist Autor folgender Vogel-Fachbücher: LOGO!-Kurs SPS-Grundkurs mit SIMATIC S7 SPS-Aufbaukurs mit SIMATIC S7 SPS-Beispiele mit SIMATIC S7

Dem Buch liegt eine Demo DVD der Siemens AG bei. «SIMATIC STEP 7 Professional, Edition 2006 SR5, Trial License» umfasst: SIMATIC STEP 7 V5.4 SP4, S7-GRAPH V5.3 SP6, S7-SCL V5.3 SP5, S7-PLCSIM V5.4 SP2 und ist 14 Tage zu Testzwecken nutzbar. Die Software ist nur unter Microsoft Windows XP Professional Edition SP3 oder Microsoft Windows Vista 32 Bit Business SP1/SP2 oder Microsoft Windows Vista 32 Bit Ultimate SP1/SP2 ablauffähig.

Weitere Informationen erhalten Sie im Internet unter: «http://www.siemens.de/sce/promotoren» «http://www.siemens.de/sce/module» «http://www.siemens.de/sce/tp»

## Weitere Informationen: www.vogel-buchverlag.de

ISBN 978-3-8343-3188-5 2. Auflage. 2010 Alle Rechte, auch der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Hiervon sind die in §§ 53, 54 UrhG ausdrücklich genannten Ausnahmefälle nicht berührt. Printed in Germany Copyright 2006 by Vogel Business Media GmbH & Co. KG, Würzburg Umschlaggrafik: Vogel Business Media GmbH & Co. KG, Würzburg.

# Vorwort

In modernen Produktionsabläufen spielen SPS in der Automatisierungstechnik heutzutage eine herausragende Rolle. Sie decken nahezu alle programmierbaren Anwendungen ab, die im Maschinen- und Anlagenbau auftreten. Eine erstklassige Aus- und Weiterbildung in dieser Schlüsseltechnologie, z.B. für die Elektround Metallindustrie, ist deshalb von großer Bedeutung.

Als konsequente Erweiterung und Ergänzung der beiden erfolgreichen Fachbücher aus dem Vogel Buchverlag SPS-Grundkurs und SPS-Aufbaukurs werden hier 45 Beispiele aus der Praxis präsentiert. Sie beginnen bei einfachen Verknüpfungsund Ablaufsteuerungen bis hin zur Berechnung von Gleichungen, Analogwertverarbeitung, dem Automatisieren technischer Stationen, der Koordination vernetzter Antriebstechnik über PROFIBUS-Programmierungen und Robotersteuerungen.

Alle Beispiele werden anhand von Technologieschemen und zum Teil mit Ablaufketten erläutert. Sie sind vom «Einfachen zum Schwierigen» aufgebaut und für den Einsatz an Berufsschulen, Technikerschulen, Meisterschulen usw., aber auch für das Selbststudium sehr gut geeignet. Die Lösungen werden im Buch, um den Rahmen nicht zu sprengen, nur als Funktionsplan (FUP) aufgeführt. Auf einer beigelegten CD-ROM finden Sie dagegen Funktionsplan (FUP), Kontaktplan (KOP) und Anweisungsliste (AWL). Weiterhin sind alle Lösungsvorschläge der 45 Buchbeispiele als STEP7- sowie als pdf.-Dateien archiviert. Zusätzlich enthält die CD eine SIMIT-Demoversion mit ablauffähiger Anlagensimulation für das Beispiel 8: Hebebühne und Beispiel 17: Waschmaschine. Weitere Informationen über SIMIT «www.siemens.de/sce».

Alle Beispiele wurden mit der SPS-Steuerung SIMATIC S7 300 der Fa. Siemens auf ihre einwandfreie Funktion getestet. Der Autor kann jedoch keine Garantie für die vorgeschlagenen Programmlösungen übernehmen.

Ich bedanke mich bei der Fa. Siemens für die freundliche Unterstützung und bei allen, die die Entstehung dieses Buches gefördert haben. Beim Vogel Buchverlag bedanke ich mich für die gewohnt hervorragende Betreuung. Resonanz aus dem Benutzerkreis ist mir wie immer stets willkommen. E-Mail: kaftan@ikh-schulung.de

Weißenburg / Heuberg (Mittelfranken)

Jürgen Kaftan

# Inhaltsverzeichnis

| Vor      | wort                                                                     | 5   |
|----------|--------------------------------------------------------------------------|-----|
| Einl     | leitung                                                                  | 9   |
| 1        | Gleichstrombremsung eines Drehstrommotors                                | 11  |
| 2        | Presse mit Schutzeinrichtung                                             | 17  |
| 3        | Bohrloch-Wellenpumpe                                                     | 23  |
| 4        | Rührwerk                                                                 | 27  |
| 5        | Entlüftung einer Lagerhalle                                              | 33  |
| 6        | Mischanlage                                                              | 39  |
| 7        | Sandstrahlkammer                                                         | 45  |
| 8        | Hebebühne                                                                | 51  |
| 9        | Rolltreppe                                                               | 57  |
| 10       | Steuerung eines Transportwagens                                          | 61  |
| 11       | 2 Förderbänder                                                           | 65  |
| 12       | Behälteraufzug                                                           | 71  |
| 13       | Abfüllanlage                                                             | 77  |
| 14       | Fallmagazin                                                              | 83  |
| 15       | Zahnradschmierung                                                        | 89  |
| 16       | Mischtrommel                                                             | 95  |
| 17       | Waschmaschine                                                            | 101 |
| 18       | Windrad                                                                  | 109 |
| 19       | 7-Segment-Anzeige für Vorwärts-/Rückwärtszähler mit Grenzwertüberwachung | 115 |
| 20       | Reinigungskammer                                                         | 121 |
| 21       | Pneumatische Formstation für ein Montageprofil                           | 131 |
| 22       | Paketsortieranlage                                                       | 139 |
| 23       | Paketwendeanlage                                                         | 147 |
| 24       | Paketförderanlage                                                        | 155 |
| 25       | Pneumatisches Zuteilen von Klötzen                                       | 161 |
| 26       | Drehrichtungserkennung einer langsam laufenden Welle                     | 169 |
| 27       | Zahlwertvorgabe außerhalb der SPS                                        | 175 |
| 28       |                                                                          | 181 |
| 29       | Zeitvorgabe mit Vorwahltaster außerhalb der SPS                          | 18/ |
| 30       | laktgeber mit Vorwahl von 5 verschiedenen Taktimpulsen                   | 193 |
| 31       | Motorsimulation                                                          | 199 |
| 32       |                                                                          | 207 |
| 33       | Kaffeeautomat                                                            | 213 |
| 34       | SPS-Koboter                                                              | 221 |
| 33       | Stationswahl für 4 Stationen                                             | 251 |
| 36<br>27 | werbeschrift                                                             | 257 |
| 3/<br>20 | Iemperaturanzeige mit Leuchtmeldern                                      | 263 |
| 38       | Iemperaturuberwacnung eines Kessels                                      | 269 |
| 39       | wurrein                                                                  | 2/5 |

| 40 | Steuerung eines Drehstrommotors über PROFIBUS mit Frequenzumrichter           | 281 |
|----|-------------------------------------------------------------------------------|-----|
| 41 | Wendeschaltung eines DS-Asynchronmotors mit 2 Drehzahlen und 2 Drehrichtungen |     |
|    | über PROFIBUS                                                                 | 299 |
| 42 | Förderbandsteuerung mit Drehzahlvorwahl über PROFIBUS 0100%                   | 307 |
| 43 | Pneumatisches Zuführen von Teilen                                             | 315 |
| 44 | Förderband mit Sensoren                                                       | 323 |
| 45 | Messen und Handhaben mit analoger Vermessung                                  | 339 |

# Einleitung

Speicherprogrammierbare Steuerungen (SPS) sind in der Automatisierungstechnik wichtige Bestandteile. Der Einsatz dieser Technologie liegt in vielen Bereichen wie z.B. in der Maschinenindustrie, Verfahrenstechnik und in der vernetzten Antriebstechnik. Mit der Integration von Sensorik und anderen Aktoren sowie der Feldbustechnik wird eine durchgängige Automatisierungslösung erreicht. Ein verstärkter Trend der Automatisierung im Maschinen- und Anlagenbau ist dabei nicht zu übersehen.

Alle Programmierbeispiele in diesem Buch sind praxisbezogen aufgebaut. Sie wurden mit der Steuerung SIMATIC S7 300 der Fa. Siemens mit der CPU IFM 314 sowie mit der CPU 314C-2DP (PROFIBUS) und der dazugehörigen Software STEP 7 V5.3 programmiert.

Getestet wurden die Programmierbeispiele mit dem im Bild unten gezeigten Simulator.



Bild Simulator (Quelle: IKH-Didaktische Systeme)

# 1 Gleichstrombremsung eines Drehstrommotors

Es soll das Abbremsen eines Drehstrommotors mit einer SPS SIMATIC S7 300 realisiert werden.





## Funktionsbeschreibung

Es soll ein Drehstrommotor mit Gleichstrom gebremst werden. Dabei werden 2 Stränge der Ständerwicklung kurzzeitig (Bremszeit = 2,5 s) an Gleichspannung gelegt.

Mit dem Schalter S0 wird die Anlage eingeschaltet. Wird der Taster S2 betätigt, wird das Schütz K1 erregt, und der DS-Motor läuft an. Wird der Taster S1 betätigt, schaltet das Schütz K2 das Steuergerät für die Gleichstrombremsung 2,5 s lang aktiv, bis der Motor steht. Der Vorgang kann von neuem beginnen.



Bild 1.2 Anschluss an die SPS

| Zuordnungsliste |         |                                            |  |  |
|-----------------|---------|--------------------------------------------|--|--|
| Symbol          | Operand | Kommentar                                  |  |  |
| S0              | E 124.0 | Schalter «Schließer» Anlage ein            |  |  |
| S1              | E 124.1 | Taster «Öffner» Motor Aus / Bremsvorgang   |  |  |
| S2              | E 124.2 | Taster «Schließer» Start                   |  |  |
| K1              | A 124.1 | Schütz für Drehstrommotor                  |  |  |
| K2              | A 124.2 | Schütz für Steuergerät Gleichstrombremsung |  |  |

## Man geht nach folgender Reihenfolge vor:

- □ Im SIMATIC-Manager ein neues Projekt mit dem Namen «Gleichstrombremsung» anlegen.
- □ Hardware konfigurieren (z.B. CPU314 mit integrierten Ein-/Ausgängen).
- □ Funktion wählen (Vorschlag FC1).
- □ Symboltabelle erstellen.
- □ Programm eingeben.
- D Organisationsbaustein (OB1) öffnen und die Funktion FC1 organisieren.
- D Programm speichern und in das Automatisierungsgerät übertragen.
- □ Programm austesten.

| OB1 - <offline></offline>       |                             |
|---------------------------------|-----------------------------|
| Name:                           | Familie:                    |
| Autor:                          | Bausteinversion: 2          |
| Zeitstempel Code:<br>Interface: | 12.07.2005 09:51:58         |
| Längen (Baustein / Code         | / Daten): 00120 00008 00020 |

| Name         | Datentyp    | Adresse | Kommentar                                            |
|--------------|-------------|---------|------------------------------------------------------|
| TEMP         |             | 0.0     |                                                      |
| OB1_EV_CLASS | Byte        | 0.0     | Bits $0-3 = 1$ (Coming event), Bits $4-7 = 1$ (Event |
| OB1_SCAN_1   | Byte        | 1.0     | 1 (Cold restart scan 1 of OB 1), 3 (Scan 2-n of      |
| OB1_PRIORITY | Byte        | 2.0     | Priority of OB Execution                             |
| OB1_OB_NUMBR | Byte        | 3.0     | 1 (Organization block 1, OB1)                        |
| OB1_RESERVED | Byte        | 4.0     | Reserved for system                                  |
| OB1_RESERVED | Byte        | 5.0     | Reserved for system                                  |
| OB1_PREV_CYC | Int         | 6.0     | Cycle time of previous OB1 scan (milliseconds)       |
| OB1_MIN_CYCL | Int         | 8.0     | Minimum cycle time of OB1 (milliseconds)             |
| OB1_MAX_CYCL | Int         | 10.0    | Maximum cycle time of OB1 (milliseconds)             |
| OB1_DATE_TIM | Date_And_Ti | 12.0    | Date and time OB1 started                            |

#### Baustein: OB1 Gleichstrombremsung eines Drehstrommotors

#### Netzwerk: 1



# FC1 - <offline>

| Name:   | SIMATIC          | Familie:  | Beispie  | el    |       |
|---------|------------------|-----------|----------|-------|-------|
| Autor:  | Kaftan           | Version:  | 0.1      |       |       |
|         |                  | Baustein  | version  | 2     |       |
| Zeitste | mpel Code:       | 05.10.20  | 05 10:23 | 3:29  |       |
|         | Interface:       | 28.06.20  | 05 18:03 | L:29  |       |
| Längen  | (Baustein / Code | / Daten): | 00172    | 00074 | 00000 |

| Name   | Datentyp | Adresse | Kommenta |
|--------|----------|---------|----------|
| IN     |          | 0.0     |          |
| OUT    |          | 0.0     |          |
| IN_OUT |          | 0.0     |          |
| TEMP   |          | 0.0     |          |
| RETURN |          | 0.0     |          |
| RET_VA |          | 0.0     |          |

## Baustein: FC1 Gleichstrombremsung eines Drehstrommotors

Netzwerk: 1 Anlage ein



Netzwerk: 2 Ansteuerung Drehstrommotor



Netzwerk: 3 Ansteuerung Bremse





SIMATIC

Gleichstrombremsung\SIMATIC 300(1)\CPU 314IFM\S7-Programm(1)\Symbole 27.09.2005 12:28:04

| Symbolta    | Symboltabellen-Eigenschaften |     |       |          |                                        |  |  |  |
|-------------|------------------------------|-----|-------|----------|----------------------------------------|--|--|--|
| Name:       |                              |     |       |          | Symbole                                |  |  |  |
| Autor:      |                              |     |       |          |                                        |  |  |  |
| Komment     | ar:                          |     |       |          |                                        |  |  |  |
| Erstellt an | n:                           |     |       |          | 26.09.2005 08:19:15                    |  |  |  |
| Zuletzt ge  | ändert am:                   |     |       |          | 26.09.2005 08:23:42                    |  |  |  |
| Letztes Fi  | Iterkriterium                | n:  |       |          | Alle Symbole                           |  |  |  |
| Anzahl de   | r Symbole:                   |     |       |          | 5/5                                    |  |  |  |
| Letzte So   | rtierung:                    |     |       |          | Symbol aufsteigend                     |  |  |  |
| Status      | Symbol                       | Adı | resse | Datentyp | Kommentar                              |  |  |  |
|             | K1                           | А   | 124.1 | BOOL     | Schütz Motor                           |  |  |  |
|             | K2                           | А   | 124.2 | BOOL     | Schütz Steuergerät Gleichstrombremsung |  |  |  |
|             | S0                           | Е   | 124.0 | BOOL     | Schalter "Schließer" Anlage ein        |  |  |  |
|             | S1                           | Е   | 124.1 | BOOL     | Taster "Öffner" Motor aus              |  |  |  |
|             | S2                           | Е   | 124.2 | BOOL     | Taster "Schließer" Start               |  |  |  |

# 2 Presse mit Schutzeinrichtung

Es soll eine Presse mit Schutzeinrichtung mit einer SPS SIMATIC S7 300 gesteuert werden.



Bild 2.1 Technologieschema

## Funktionsbeschreibung

Es sollen Teile in eine Form gepresst werden. Der Stößel wird von einem pneumatischen Zylinder Y0 bewegt. Die obere Stellung des Stößels wird mit dem Endtaster B1 und die untere Stellung mit dem Endtaster B2 erfasst. Bei Schließen des Schutzgitters B3 kann der Pressvorgang beginnen. Wird Taster S1 und S1 (2-Hand-Sicherheitsstart) betätigt, so fährt der Stößel nach unten bis B2, verweilt dort 500 ms und fährt dann wieder automatisch nach oben. Der Vorgang kann von neuem beginnen. Der Leuchtmelder H0 zeigt die Startbereitschaft der Anlage an.



Bild 2.2 Anschluss an die SPS

| Zuordnungsliste |         |                                           |  |  |
|-----------------|---------|-------------------------------------------|--|--|
| Symbol          | Operand | Kommentar                                 |  |  |
| S0              | E 124.0 | Schalter «Schließer» Anlage ein           |  |  |
| B1              | E 124.1 | Endtaster «Schließer» Stößel Zyl. A oben  |  |  |
| B2              | E 124.2 | Endtaster «Schließer» Stößel Zyl. A unten |  |  |
| B3              | E 124.3 | Initiator Schutzgitter geschlossen        |  |  |
| S4              | E 124.4 | Taster «Schließer» Start                  |  |  |
| S5              | E 124.5 | Taster «Schließer» Start                  |  |  |
| H0              | A 124.0 | Leuchtmelder Betriebsbereit               |  |  |
| Y0              | A 124.1 | Zylinder A                                |  |  |



#### Man geht nach folgender Reihenfolge vor:

- □ Im SIMATIC-Manager ein neues Projekt mit dem Namen «Presse» anlegen.
- □ Hardware konfigurieren (z.B. CPU314 mit integrierten Ein-/Ausgängen).
- □ Funktion wählen (Vorschlag FC2).
- □ Symboltabelle erstellen.
- □ Programm nach Ablaufkette eingeben.
- □ Organisationsbaustein (OB1) öffnen und die Funktion FC2 organisieren.
- D Programm speichern und in das Automatisierungsgerät übertragen.
- □ Programm austesten.

| SIMATIC | SIMATIC | 300(1)\CPU | Presse\<br>314TFM\\OB1 | - <offline></offline> | 27.09.2005 | 12:36:42 |
|---------|---------|------------|------------------------|-----------------------|------------|----------|

| Name:                   | Familie:              |      |
|-------------------------|-----------------------|------|
| Autor:                  | Version: 0.1          |      |
|                         | Bausteinversion: 2    |      |
| Zeitstempel Code:       | 19.07.2005 16:33:10   |      |
| Interface:              | 15.02.1996 16:51:12   |      |
| Längen (Baustein / Code | / Daten): 00120 00008 | 0002 |

| Name         | Datentyp    | Adresse | Kommentar                                        |  |  |  |
|--------------|-------------|---------|--------------------------------------------------|--|--|--|
| TEMP         |             | 0.0     |                                                  |  |  |  |
| OB1_EV_CLASS | Byte        | 0.0     | Bits 0-3 = 1 (Coming event), Bits 4-7 = 1 (Event |  |  |  |
| OB1_SCAN_1   | Byte        | 1.0     | 1 (Cold restart scan 1 of OB 1), 3 (Scan 2-n of  |  |  |  |
| OB1_PRIORITY | Byte        | 2.0     | Priority of OB Execution                         |  |  |  |
| OB1_OB_NUMBR | Byte        | 3.0     | 1 (Organization block 1, OB1)                    |  |  |  |
| OB1_RESERVED | Byte        | 4.0     | Reserved for system                              |  |  |  |
| OB1_RESERVED | Byte        | 5.0     | Reserved for system                              |  |  |  |
| OB1_PREV_CYC | Int         | 6.0     | Cycle time of previous OB1 scan (milliseconds)   |  |  |  |
| OB1_MIN_CYCL | Int         | 8.0     | Minimum cycle time of OB1 (milliseconds)         |  |  |  |
| OB1_MAX_CYCL | Int         | 10.0    | Maximum cycle time of OB1 (milliseconds)         |  |  |  |
| OB1 DATE TIM | Date And Ti | 12.0    | Date and time OB1 started                        |  |  |  |

Baustein: OB1 Presse mit Schutzeinrichtung

Netzwerk: 1



## FC2 - <offline>

 Name:
 Familie:

 Autor:
 Kaftan
 Version: 0.1

 Bauteinversion: 2
 2

 Zeitstempel Code:
 27.09.2005 09:01:31

 Interface:
 29.06.2005 11:24:55

 Längen (Baustein / Code
 / Daten): 00244 00138 00000

| Name   | Datentyp | Adresse | Kommenta |
|--------|----------|---------|----------|
| IN     |          | 0.0     |          |
| OUT    |          | 0.0     |          |
| IN_OUT |          | 0.0     |          |
| TEMP   |          | 0.0     |          |
| RETURN |          | 0.0     |          |
| RET VA |          | 0.0     |          |

#### Baustein: FC2 Presse mit Schutzeinrichtung

#### Netzwerk: 1 Initialschritt 0



Netzwerk: 2 Schritt 1



Netzwerk: 3 Schritt 2





| Symbolt              | abellen-Eig    | ens | chaften |          |                                                   |  |  |  |
|----------------------|----------------|-----|---------|----------|---------------------------------------------------|--|--|--|
| Name:                |                |     |         |          | Symbole                                           |  |  |  |
| Autor:               |                |     |         |          |                                                   |  |  |  |
| Kommen               | tar:           |     |         |          |                                                   |  |  |  |
| Erstellt ar          | m:             |     |         |          | 26.09.2005 08:19:13                               |  |  |  |
| Zuletzt geändert am: |                |     |         |          | 27.09.2005 09:02:31                               |  |  |  |
| Letztes F            | ilterkriteriun | n:  |         |          | Alle Symbole                                      |  |  |  |
| Anzahl de            | er Symbole:    |     |         |          | 8/8                                               |  |  |  |
| Letzte So            | ortierung:     |     |         |          | Symbol aufsteigend                                |  |  |  |
| Status               | Symbol         | Ad  | resse   | Datentyp | Kommentar                                         |  |  |  |
|                      | B1             | Е   | 124.1   | BOOL     | Stößel von Zylinder A oben "Schließer"            |  |  |  |
|                      | B2             | Е   | 124.2   | BOOL     | Stößel von Zylinder A unten (Pressen) "Schließer" |  |  |  |
|                      | B3             | Е   | 124.3   | BOOL     | Näherungsschalter "Schließer" Schutzgitter        |  |  |  |
|                      | H0             | А   | 124.0   | BOOL     | Leuchtmelder startbereit                          |  |  |  |
|                      | S0             | Е   | 124.0   | BOOL     | Schalter "Schließer" Anlage startbereit           |  |  |  |
|                      | S4             | Е   | 124.4   | BOOL     | Taster "Schließer" Start                          |  |  |  |
|                      | S5             | Е   | 124.5   | BOOL     | Taster "Schließer" Start                          |  |  |  |
|                      | Y0             | А   | 124.1   | BOOL     | Zylinder A mit Federrückstellung                  |  |  |  |

# 3 Bohrloch-Wellenpumpe

Es soll eine Bohrloch-Wellenpumpe mit einer SPS SIMATIC S7 300 gesteuert werden.



Bild 3.1 Technologieschema

## Funktionsbeschreibung

Es soll aus einem Bohrloch Wasser gepumpt werden. Der Antriebsmotor M1 für die Wasserpumpe wird über eine KUSA-Schaltung (Sanftanlauf) betrieben. Wird der Taster S1 betätigt, so zieht das Schütz K1 und der Motor läuft in der Phase L2 mit dem Anlaufwiderstand R an. Nach einer Zeit von 4,5 s wird der Widerstand mit dem Schützkontakt K2 überbrückt, und der Motor läuft mit seiner vollen Leistung weiter. Über den Taster S0 oder über das Überstromrelais F1 wird die Anlage sofort abgeschaltet. Den Betrieb zeigt der Leuchtmelder H1 an.



Bild 3.2 Hauptstromkreis



Bild 3.3 Anschluss an die SPS

| Zuordnungsliste |         |                                 |  |  |  |
|-----------------|---------|---------------------------------|--|--|--|
| Symbol          | Operand | Kommentar                       |  |  |  |
| S0              | E 124.0 | Taster «Öffner» Anlage aus      |  |  |  |
| S1              | E 124.1 | Taster «Schließer» Anlage Start |  |  |  |
| F1              | E 124.2 | Überstromrelais «Öffner»        |  |  |  |
| K1              | A 124.0 | Motor                           |  |  |  |
| H1              | A 124.1 | Leuchtmelder Betrieb            |  |  |  |
| K2              | A 124.2 | Anlaufwiderstand                |  |  |  |

## Man geht nach folgender Reihenfolge vor:

- □ Im SIMATIC-Manager ein neues Projekt mit dem Namen «Bohrloch» anlegen.
- □ Hardware konfigurieren (z.B. CPU314 mit integrierten Ein-/Ausgängen).
- □ Funktion wählen (Vorschlag FC3).
- □ Symboltabelle erstellen.
- □ Programm eingeben.
- D Organisationsbaustein (OB1) öffnen und die Funktion FC3 organisieren.
- D Programm speichern und in das Automatisierungsgerät übertragen.
- □ Programm austesten.

| SIMATIC                   | Bohrloch                                             | 27.09.2005 | 12:46:40 |
|---------------------------|------------------------------------------------------|------------|----------|
|                           | SIMATIC 300(1)\CPU 314IFM\\OB1 - <offline></offline> |            |          |
|                           |                                                      |            |          |
| OB1 - <offline></offline> |                                                      |            |          |

| Name:                   | Familie:                    |
|-------------------------|-----------------------------|
| Autor:                  | Version: 0.1                |
|                         | Bausteinversion: 2          |
| Zeitstempel Code:       | 27.09.2005 08:46:30         |
| Interface:              | 15.02.1996 16:51:12         |
| Längen (Baustein / Code | / Daten): 00120 00008 00020 |

| Name         | Datentyp    | Adresse | Kommentar                                            |
|--------------|-------------|---------|------------------------------------------------------|
| TEMP         |             | 0.0     |                                                      |
| OB1_EV_CLASS | Byte        | 0.0     | Bits $0-3 = 1$ (Coming event), Bits $4-7 = 1$ (Event |
| OB1_SCAN_1   | Byte        | 1.0     | 1 (Cold restart scan 1 of OB 1), 3 (Scan 2-n of      |
| OB1_PRIORITY | Byte        | 2.0     | Priority of OB Execution                             |
| OB1_OB_NUMBR | Byte        | 3.0     | 1 (Organization block 1, OB1)                        |
| OB1_RESERVED | Byte        | 4.0     | Reserved for system                                  |
| OB1_RESERVED | Byte        | 5.0     | Reserved for system                                  |
| OB1_PREV_CYC | Int         | 6.0     | Cycle time of previous OB1 scan (milliseconds)       |
| OB1_MIN_CYCL | Int         | 8.0     | Minimum cycle time of OB1 (milliseconds)             |
| OB1_MAX_CYCL | Int         | 10.0    | Maximum cycle time of OB1 (milliseconds)             |
| OB1_DATE_TIM | Date_And_Ti | 12.0    | Date and time OB1 started                            |

Baustein: OB1 Bohrlochwellenpumpe

Netzwerk: 1



#### FC3 - <offline>

| Name :  |                  | Familie:              |       |
|---------|------------------|-----------------------|-------|
| Autor:  | Kaftan           | Version: 0.1          |       |
|         |                  | Bausteinversion: 2    |       |
| Zeitste | mpel Code:       | 27.09.2005 08:46:50   |       |
|         | Interface:       | 29.06.2005 11:24:55   |       |
| Längen  | (Baustein / Code | / Daten): 00144 00050 | 00000 |

| Name   | Datentyp | Adresse | Kommenta |
|--------|----------|---------|----------|
| IN     |          | 0.0     |          |
| OUT    |          | 0.0     |          |
| IN_OUT |          | 0.0     |          |
| TEMP   |          | 0.0     |          |
| RETURN |          | 0.0     |          |
| RET_VA |          | 0.0     |          |

#### Baustein: FC3 Bohrlochwellenpumpe

Netzwerk: 1 Motor / Leuchtmelder Betrieb



Netzwerk: 2 Anlaufwiderstand R



#### SIMATIC Bohrloch\SIMATIC 27.09.2005 12:51:56 300(1)\CPU 314IFM\S7-Programm(1)\Symbole

| Symbolta    | abellen-Eig    | ense | chaften |          |                                 |  |  |  |
|-------------|----------------|------|---------|----------|---------------------------------|--|--|--|
| Name:       |                |      |         |          | Symbole                         |  |  |  |
| Autor:      |                |      |         |          |                                 |  |  |  |
| Komment     | tar:           |      |         |          |                                 |  |  |  |
| Erstellt ar | n:             |      |         |          | 26.09.2005 08:19:10             |  |  |  |
| Zuletzt ge  | andert am:     |      |         |          | 27.09.2005 08:47:06             |  |  |  |
| Letztes F   | ilterkriterium | 1:   |         |          | Alle Symbole                    |  |  |  |
| Anzahl de   | er Symbole:    |      |         |          | 6/6                             |  |  |  |
| Letzte So   | rtierung:      |      |         |          | Symbol aufsteigend              |  |  |  |
| Status      | Symbol         | Ad   | resse   | Datentyp | Kommentar                       |  |  |  |
|             | F1             | Е    | 124.2   | BOOL     | Überstromrelais "Öffner"        |  |  |  |
|             | H1             | А    | 124.1   | BOOL     | Leuchtmelder Betrieb            |  |  |  |
|             | K1             | А    | 124.0   | BOOL     | Schütz Motor                    |  |  |  |
|             | K2             | А    | 124.2   | BOOL     | Schütz Anlaufwiderstand R       |  |  |  |
|             | S0             | Е    | 124.0   | BOOL     | Taster "Öffner" Anlage aus      |  |  |  |
|             | S1             | Е    | 124.1   | BOOL     | Taster "Schließer" Anlage Start |  |  |  |

# 4 Rührwerk

Es soll ein Rührwerk mit einer SPS SIMATIC S7 300 gesteuert werden.



#### Funktionsbeschreibung

Ein Rührwerk wird mit einem polumschaltbaren Drehstrommotor (2 Wicklungen, 2 Drehzahlen (hohe – niedrige Drehzahl) betrieben. Es kann mit dem Schalter S2 zwischen Hand- und Automatikbetrieb gewählt werden. Wird der Taster S3 bei Handbetrieb betätigt, so läuft der Motor mit der niedrigen Drehzahl. Mit dem Taster S4 wird von Hand die hohe Drehzahl eingeschaltet.

Wird im Automatikbetrieb der Taster S5 betätigt, so läuft der Motor mit der niedrigen Drehzahl 3 s lang an. Nach Ablauf dieser Zeit schaltet der Motor auf die hohe Drehzahl um und läuft mit dieser 10 s. Nach betätigen von S5 wird der Ablauf wiederholt. Mit dem NOT-AUS-Taster S0 oder durch ansprechen der Überstromrelais F1 und F2 schaltet der Motor sofort ab.



| Zuordnungsliste |         |                                                   |  |  |  |  |
|-----------------|---------|---------------------------------------------------|--|--|--|--|
| Symbol          | Operand | Kommentar                                         |  |  |  |  |
| S0              | E 124.0 | Taster «Öffner» Anlage aus                        |  |  |  |  |
| S1              | E 124.1 | Taster «Schließer» Anlage Start                   |  |  |  |  |
| S2              | E 124.2 | Schalter «Schließer» Hand / Automatik             |  |  |  |  |
| \$3             | E 124.3 | Taster «Schließer» Motor Rührer niedrige Drehzahl |  |  |  |  |
| S4              | E 124.4 | Taster «Schließer» Motor Rührer hohe Drehzahl     |  |  |  |  |
| S5              | E 124.5 | Taster «Schließer» Start Automatik                |  |  |  |  |
| F1              | E 124.6 | Überstromrelais «Öffner»                          |  |  |  |  |
| F2              | E 124.7 | Überstromrelais «Öffner»                          |  |  |  |  |
| H0              | A 124.0 | Leuchtmelder Betrieb                              |  |  |  |  |
| K1              | A 124.1 | Schütz Motor niedrige Drehzahl                    |  |  |  |  |
| K2              | A 124.2 | Schütz Motor hohe Drehzahl                        |  |  |  |  |

## Man geht nach folgender Reihenfolge vor:

- □ Im SIMATIC-Manager ein neues Projekt mit dem Namen «Rührwerk» anlegen.
- □ Hardware konfigurieren (z.B. CPU314 mit integrierten Ein-/Ausgängen).
- □ Funktion wählen (Vorschlag FC4).
- □ Symboltabelle erstellen.
- □ Programm eingeben.
- D Organisationsbaustein (OB1) öffnen und die Funktion FC4 organisieren.
- Derogramm speichern und in das Automatisierungsgerät übertragen.
- □ Programm austesten.

| SIMATIC | Rührwerk\ |            |  |  |  |  | 27.09.2005 | 12:54:55 |
|---------|-----------|------------|--|--|--|--|------------|----------|
|         | SIMATIC   | 300(1)\CPU |  |  |  |  |            |          |
|         |           |            |  |  |  |  |            |          |

| OB1 - <offline></offline> |                             |
|---------------------------|-----------------------------|
| Name:                     | Familie:                    |
| Autor:                    | Version: 0.1                |
|                           | Bausteinversion: 2          |
| Zeitstempel Code:         | 12.07.2005 09:59:26         |
| Interface:                | 15.02.1996 16:51:12         |
| Längen (Baustein / Code   | / Daten): 00120 00008 00020 |

| Name         | Datentyp    | Adresse | Kommentar                                            |  |  |
|--------------|-------------|---------|------------------------------------------------------|--|--|
| TEMP         |             | 0.0     |                                                      |  |  |
| OB1_EV_CLASS | Byte        | 0.0     | Bits $0-3 = 1$ (Coming event), Bits $4-7 = 1$ (Event |  |  |
| OB1_SCAN_1   | Byte        | 1.0     | 1 (Cold restart scan 1 of OB 1), 3 (Scan 2-n of      |  |  |
| OB1_PRIORITY | Byte        | 2.0     | Priority of OB Execution                             |  |  |
| OB1_OB_NUMBR | Byte        | 3.0     | 1 (Organization block 1, OB1)                        |  |  |
| OB1_RESERVED | Byte        | 4.0     | Reserved for system                                  |  |  |
| OB1_RESERVED | Byte        | 5.0     | Reserved for system                                  |  |  |
| OB1_PREV_CYC | Int         | 6.0     | Cycle time of previous OB1 scan (milliseconds)       |  |  |
| OB1_MIN_CYCL | Int         | 8.0     | Minimum cycle time of OB1 (milliseconds)             |  |  |
| OB1_MAX_CYCL | Int         | 10.0    | Maximum cycle time of OB1 (milliseconds)             |  |  |
| OB1 DATE TIM | Date And Ti | 12.0    | Date and time OB1 started                            |  |  |

| Baustein  | OB1 | Rührwerl |
|-----------|-----|----------|
| Baustein: | OBT | Runrwer  |

Netzwerk: 1



#### FC4 - <offline>

SIMATIC

""
Name: Familie:
Autor: Kaftan Version: 0.1
Bausteinversion: 2
Zeitstempel Code: 27.09.2005 08:42:47
Interface: 29.06.2005 12:06:23
Längen (Baustein / Code / Daten): 00286 00186 00000

| Name   | Datentyp | Adresse | Kommenta |
|--------|----------|---------|----------|
| IN     |          | 0.0     |          |
| OUT    |          | 0.0     |          |
| IN_OUT |          | 0.0     |          |
| TEMP   |          | 0.0     |          |
| RETURN |          | 0.0     |          |
| RET_VA |          | 0.0     |          |

#### Baustein: FC4 Rührwerk

Netzwerk: 1 Anlage ein / aus Leuchtmelder HO





