Inhaltsverzeichnis

Vor	wort			5	
1	Einle	eitung		11	
Кар	itel 2	bis 13	von Dr. Johannes Adam		
2	Tem	peratur	und Wärme	13	
	2.1	2.1 Physikalische Grundbegriffe			
	2.2	Arten d	der Wärmeübertragung	14	
	2.3	Elektris	ches und thermisches Strömungsfeld	15	
3	Von	Watt zu	u Celsius	17	
	3.1	Wärme	ubergangskoeffizient	17	
		3.1.1	Newton-Kühlung	18	
		3.1.2	Messung	18	
		3.1.3	Schätzung der Baugruppentemperatur	20	
	3.2	Wärme	widerstand	20	
		3.2.1	Онм-Analogie	21	
		3.2.2	Wärmewiderstand von Bauteilen	21	
		3.2.3	Wärmewiderstand von bewegter Luft	22	
4	Wärmeabgabe durch Konvektion und Strahlung				
	4.1	Konvek	stion	25	
		4.1.1	Erzwungene Konvektion	25	
		4.1.2	Freie Konvektion	26	
	4.2	Korrela	itionen	28	
		4.2.1	Reynolds-Zahl	28	
		4.2.2	Nußelt-Zahl	29	
		4.2.3	Nußelt-Korrelationen für erzwungene Konvektion	29	
		4.2.4	Grashof-Zahl	30	
		4.2.5	Nußelt-Korrelationen für laminare freie Konvektion	30	
	4.3	Wärme	strahlung		
	4.4	Konvek	ction plus Strahlung	35	
5	Wär	Wärmetransport durch Wärmeleitung			
	5.1	Wärme	eleitung im Stab		
	5.2	Wärmewiderstand der Wärmeleitung			
	5.3	Spezifischer Wärmewiderstand			
	5.4	Widers	tandschaltungen	41	
	5.5	Tempe	raturprofil	44	
	5.6	Randbe	edingungen	45	
	5.7	Thermi	scher Einfluss des Lötstopplacks	46	
6	Die	Leiterpla	atte als Kühlkörper	49	
	6.1	Konvek	tion und Wärmeleitung im Stab	49	

	6.Z	Die orthotrope Leiterplatte I	. 50		
	6.3	Wärmespreizung eindimensional	. 52		
		6.3.1 Lineare Platte (x) mit Bauteilriegel	52		
		6.3.2 Zylindersymmetrische Platte (r) mit Coin	54		
		6.3.3 Zweidimensionale Platte (r, z) mit isothermen Rändern	56		
		6.3.4 Zweidimensionale Platte (r, z) auf Kühlkörper	56		
		6.3.5 Wärmespreizwinkel	60		
7	Die I	Leiterplatte als komplexer Wärmeübertrager	. 63		
	7.1	Beispiele verschiedener Leiterplatten-Layouts	. 63		
		7.1.1 Arduino	63		
		7.1.2 RS-ChipKit MAX32	66		
		7.1.3 EVB-USB580x_A	68		
	7.2	Orthotrope Wärmeleitfähigkeit II	. 70		
		7.2.1 RSChipKitMAX32 orthotrop	71		
		7.2.2 EVB-USB580x_A	72		
8	Verb	esserung der Baugruppenkühlung	. 73		
	8.1	IMS-Leiterplatten	. 73		
	8.2	Thermovias	. 73		
		8.2.1 Beispiel 1: EVB-USB580x_A	73		
		8.2.2 Beispiel 2: ISL8240MEVAL4Z	74		
		8.2.3 Ideale Thermovias	76		
	8.3	Beispiel IWR6843	. 79		
•					
9	10/	Varmewiderstande von Bauteilen			
9	vvarr	newiderstande von Bautelien	. 81		
9	vvar r 9.1	<i>O</i> -Junction-Ambient	. 81 . 81		
9	9.1 9.2	$\begin{array}{c} \Theta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $. 81 . 81 . 82		
9	9.1 9.2 9.3	$\begin{array}{l} \Theta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $. 81 . 81 . 82 . 82		
9	9.1 9.2 9.3	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen	81 81 82 82 82		
9 10	9.1 9.2 9.3 Stror 10.1	mewiderstande von Bautellen Θ-Junction-Ambient Messung von $Θ_{JA}$ nach dem Standard JESD-51 Θ und $Ψmbelastbarkeit von LeiterbahnenStrom Leistung und elektrischer Widerstand$	81 81 82 82 82 85		
9 10	9.1 9.2 9.3 Stror 10.1 10.2	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221	. 81 . 81 . 82 . 82 . 85 . 85 . 85		
9 10	9.1 9.2 9.3 Stror 10.1 10.2	newiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ nbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung	. 81 . 81 . 82 . 82 . 85 . 85 . 88 . 88		
9	9.1 9.2 9.3 Stror 10.1 10.2	newiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ nbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221	. 81 . 81 . 82 . 82 . 85 . 85 . 85 . 88 . 89 . 90		
9	Varr 9.1 9.2 9.3 Stror 10.1 10.2	newiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ nbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152	. 81 . 81 . 82 . 82 . 85 . 85 . 85 . 88 . 89 . 90 . 92		
9	Varr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4	newiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen	. 81 . 81 . 82 . 82 . 85 . 85 . 88 . 88 . 89 . 90 . 92 . 93		
9	Varr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4	newiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ nbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten	. 81 . 81 . 82 . 82 . 85 . 85 . 85 . 85 . 88 . 89 . 90 . 92 . 93 . 93		
9	Varr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.2 Multilaver	. 81 . 81 . 82 . 85 . 85 . 85 . 88 . 89 . 90 . 92 . 93 . 93 . 93		
9	Stror 10.1 10.2 10.3 10.4	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.2 Multilayer 10.4.3 Elexfolie	 81 81 82 83 90 92 93 93 95 		
9	Stror 10.1 10.2 10.3 10.4	newiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ nbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.2 Multilayer 10.4.3 Flexfolie 10.4.4 Keramik	 81 81 82 82 82 85 85 85 88 89 90 92 93 93 95 95 		
9	Stror 10.1 10.2 10.3 10.4		 81 81 82 82 85 85 85 88 89 90 92 93 93 95 95 		
9 10 11	Vvarr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.3 Flexfolie 10.4.4 Keramik	 81 81 82 82 85 85 85 85 89 90 92 93 93 93 93 95 95 97 		
9 10 11	Vvarr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4 Stror 11.1	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.3 Flexfolie 10.4.4 Keramik m- und Temperatursimulation mit Layout Wärmespreizung um die Leiterbahn	 81 81 82 82 85 85 85 87 90 92 93 93 95 95 97 97 97 97 		
9 10 11	Warr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4 Stror 11.1 11.2	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.3 Flexfolie 10.4.4 Keramik m- und Temperatursimulation mit Layout Wärmespreizung um die Leiterbahn Lageneinfluss	 81 81 82 82 85 85 85 85 87 90 92 93 93 93 95 97 97 97 97 98 		
9 10 11	Warr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4 Stror 11.1 11.2 11.3	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.3 Flexfolie 10.4.4 Keramik Mutilayer Nuterplation mit Layout Wärmespreizung um die Leiterbahn Lageneinfluss Leiterbahn Lageneinfluss	 81 81 82 82 85 85 85 88 90 92 93 93 93 95 95 97 97 98 99 		
9 10 11	 Warr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4 Stror 11.1 11.2 11.3 11.4 	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.3 Flexfolie 10.4.4 Keramik Wärmespreizung um die Leiterbahn Lageneinfluss Eckenströmung Hochstrom Cu-Profile	 81 81 82 82 85 85 85 88 90 92 93 93 93 93 95 97 97 98 99 100 		
9 10 11	Vvarr 9.1 9.2 9.3 Stror 10.1 10.2 10.3 10.4 Stror 11.1 11.2 11.3 11.4 11.5	mewiderstande von Bautellen Θ -Junction-Ambient Messung von Θ_{JA} nach dem Standard JESD-51 Θ und Ψ mbelastbarkeit von Leiterbahnen Strom, Leistung und elektrischer Widerstand Die Richtlinie IPC-2221 10.2.1 Charts aus IPC-2221 und ihre Benutzung 10.2.2 Ursprung und Kritik an der IPC-2221 Die Richtlinie IPC-2152 Charts aus numerischen Simulationen 10.4.1 IPC-ähnliche Leiterplatten 10.4.2 Multilayer 10.4.3 Flexfolie 10.4.4 Keramik m- und Temperatursimulation mit Layout Wärmespreizung um die Leiterbahn Lageneinfluss Eckenströmung Hochstrom Cu-Profile Stromtragfähigkeit von Vias	 81 81 82 85 85 85 87 90 92 93 93 93 95 95 97 97 97 97 97 97 97 97 100 102 		

12	Temp	eratur u	nd Zeit	105	
	12.1	Aufheizk	urve		
	12.2	Abkühlkı	Irve		
	12.3	Transient	e Stromheizung in analytischer Näherung		
		12.3.1	Kurzschlussstrom und Auslösezeit	108	
		12.3.2	Schmelzzeit nach Onderdonk	108	
		12.3.3	Nicht-adiabatische transiente Stromheizung	110	
	12.4	Transient	e Stromheizung, numerische Simulation		
	12.5	Thermisc	he Impedanz	112	
		12.5.1	Transienter Wärmewiderstand	112	
		12.5.2	Pulsfolge und Pulsweitermodulation	114	
13	Kühl	ungshard	ware	117	
	13.1	Gehäuse		117	
		13.1.1	Belüfteter Schrank	117	
		13.1.2	Geschlossener Schrank	118	
		13.1.3	19"-Schränke	119	
		13.1.4	Baugruppe im geschlossenen Kleingehäuse	121	
	13.2	Kühlkörp	er		
		13.2.1	Freie Konvektion, analytische Zusammenhänge	123	
		13.2.2	Erzwungene Konvektion	127	
	13.3	Lüfter	-	129	
		13.3.1	Kennlinie und Arbeitspunkt	129	
		13.3.2	Druckverlust	130	
		13.3.3	Empirische Lüftergesetze	132	
		13.3.4	Lüfterkurzschluss	133	
		13.3.5	Nabentotwasser	133	
		13.3.6	Absaugen oder Einblasen	134	
Кар	itel 14	1 bis 21 v	on Wolf-Dieter Schmidt		
14	Elekt	ronik und	l Wärme		
15	Mate	rialaigan	rchaftan	1.4.1	
15	15 1	Motallo	und Isolationsmatorialion		
	15.1		topmatorial		
	IJ.Z	Leiteipiat			
16	Baute	Bauteile			
	16.1	1 Wärmeabfuhr aus Bauteilen			
	16.2	2 Halbleiter			
	16.3	Bauteilda	ten und Temperatureinflüsse		
	16.4	Verlustlei	stungsangaben		
17	Verb	ndungste	chnik		
	17.1	Leitklebe [.]	technik		
	17.2	2 Schweißtechnik			
	17.3	17.3 Einpresstechnik			
	17.4	Löttechni	k		

18	Schä	den durch Wärmeeinwirkung	171
	18.1	Leiterplattenmaterial	172
	18.2	Lötstellen	176
	18.3	Bauteile	179
19	Praxi	stipps zur einfachen Baugruppenanalyse	187
20	Leite	rplatte – Schaltungsträger und Wärmeleiter	189
	20.1	Funktion	189
	20.2	Kostenaspekte	190
	20.3	Durchkontaktierungen	191
	20.4	Konstruktionen	195
21	Layo	ut und Konstruktion – Hinweise und Erfahrungen	209
	21.1	Wärmeableitung	209
	21.2	Konstruktionsbeispiele	220
	21.3	Spezialfälle	234
Schl	usswo	ort	237
Anh	änge		239
	Anha	ng A: Wärmeübertragung in großen Höhen	239
	Anha	ng B: Fourier-Gleichung und Wärmewiderstand aus der Feldgleichung	239
	Anha	ng C: Spezifischer elektrischer Widerstand bei anderer Referenztemperatur.	241
	Anha	ng D: Aufheizkurve und Abkühlkurve	242
	Anha	ng E: Onderdonk-Gleichung	242
	Anha	ng F: Nicht-adiabatische transiente Stromheizung	243
Lite	raturv	erzeichnis	245
Stic	hwort	verzeichnis	255

7 Die Leiterplatte als komplexer Wärmeübertrager

Auf eine komplizierte Geometrie wie die einer Leiterplatte können die Formeln aus Kap. 6 nur mit Bedacht angewendet werden. Schon das YAGEO-Board (Bild 21.6) ist «komplex». Was eine Baugruppe zu einer komplizierten Geometrie macht, sind die Schichtenfolge aus Kupferlagen und prepregs (der sog. «Stack-up»), das Muster der Kupferbahnen in den Lagen, auch «Artwork» oder Layout genannt, und die Anordnung der Bauteile. Dafür muss man die FOURIER-Feldgleichung mit Methoden der numerischen Mathematik lösen («Simulation»). Jede Simulation fußt zwar auf einer idealisierenden Näherung an die Wirklichkeit, aber einer mit sehr vielen Freiheitsgraden [6.8].

Dieses Kapitel enthält ausgewählte Simulationsbeispiele, die zeigen sollen, wie das Layout die Wärmespreizung und damit die Temperatur beeinflusst (s. a. Zitat aus [6.1] in Abschnitt 6.2). Die Wärmequellen sind idealisierte Quader, der Wert der Verlustleistung ist immer 1 W, der Wärmeübergangskoeffizient immer $\alpha = 12$ W/(m²K) und die Umgebungstemperatur immer 20 °C. Das erleichtert die Vergleichbarkeit der Ergebnisse.Die angegebenen Dicken der Lagen seien Endkupferdicken, die Dicken der prepregs werden im verpressten Zustand angegeben. Die Verluste auf allen anderen Bauteilen sind 0 W.

Mit der berechneten Bauteiltemperatur lässt sich ein Wärmewiderstand «Bauteil-Umgebung» $R_{\text{th},B-U} = \frac{T_{\text{Bauteil}} - T_{\text{U}}}{1 \text{ W}}$ unmittelbar ablesen. Dass dieser Wert von Leiterplatte zu Leiterplatte verschieden ist, zeigt, dass auch die $R_{\text{th},J-A}$ Angaben in Datenblättern nicht für eine individuelle Temperaturvorhersage tauglich sind (s.u. [9.2], [9.3]).

7.1 Beispiele verschiedener Leiterplatten-Layouts

7.1.1 Arduino

ARDUINO ist eine Open-Source-Elektronikplattform, die auf einfach zu bedienender Hardware und Software basiert (Tabelle 7.1). Sie ist für jeden gedacht, der interaktive Projekte erstellt [7.1]. Das verwendete ARDUINO Board ist ein Standardbeispiel einer EAGLE Installation [7.2]. Es wird im Modell nur das mittige Bauteil IC3 mit 1 W belastet. Um das Bauteil herum gibt es auf Top eine fast sternförmige Anordnung der Leiterbahnen. Bezüglich der Bottomlage liegt es über einem Bündel von Leiterbahnen, umgeben von einem gefluteten Rest. Die Kühlung ist nicht besonders gut.

Lagen	2	Je 35 μm
Größe	100 mm x 53 mm	Bestückung einseitig
Gesamtdicke	1,6 mm	IC3: 16 x 16 mm

 Tabelle 7.1
 Steckbrief des Arduino Boards

 Tabelle 7.1
 Steckbrief des Arduino Boards – Fortsetzung

Die berechneten Thermogramme zeigt Tabelle 7.2. Die Form der Isothermen ist sehr unregelmäßig und die gelben und grünen Bereiche enden abrupt. Der Wärmespreizung gelingt es nicht, die Wärme über die gesamte Fläche zu verteilen.

 Tabelle 7.2
 Berechnete Thermogramme für Arbuino

 Tabelle 7.2
 Berechnete Thermogramme f
 ür Arduino – Fortsetzung

Die Ursachen werden deutlich, wenn man zum Temperaturfeld das Layout einblendet (Tabelle 7.3): Die Wärmespreizung endet dort, wo die Lücken zwischen den Leiterbahnen eine FR4-Barriere für den Wärmefluss bilden. Das gilt nicht nur für die Toplage, sondern auch für die Bottomlage. Das Endresultat ist dann die Überlagerung der beiden Strukturen.

7.1.2 **RS-ChipKit MAX32**

Das Board CHIPKIT MAX32 von DIGLENT ist eine Prototyping-Plattform, die die Leistung des MICROCHIP® PIC32 Mikrocontrollers herausstellt (Tabelle 7.4). Hier wird eine ältere Version (2011) benutzt [7.3], aber es gibt auch eine aktualisierte. Das Board ist ein Standardbeispiel einer DESIGNSPARK PCB Installation [7.4]. Auf Top und Bottom liegen um den zentralen Mikrocontroller PIC32MX795F512L (= IC2) die Leiterbahnen wie ein Webmuster orthogonal übereinander. Die beiden Innenlagen sind massiv.

Die berechneten Thermogramme sind in Tabelle 7.5 zu sehen. Wegen den beiden massiven Innenlagen ähnelt ihre Form denen der kreisförmigen Isothermen aus der Theorie. Das Board ist genauso groß wie Arduino, und obwohl das Bauteil kleiner ist, ist hier die Temperatur um 20 K niedriger. Das ist die Wirkung der Wärmespreizung in den Innenlagen. Ohne die Innenlagen stiege rechnerisch die Temperatur dramatisch auf 80 °C.

 Tabelle 7.4
 Steckbrief des RS-CHIPKIT MAX3 Boards

 Tabelle 7.4
 Steckbrief des RS-CHIPKIT MAX3 Boards – Fortsetzung

Tabelle 7.5 Berechnete Thermogramme aus dem RS-CHIPKIT Modell

Betrachtet man dieses Board genauer, kann man die folgenden Überlegungen anstellen:

 Nach Tabelle 7.1 ist die in-plane Leitfähigkeit dieser Art Leiterplatte λ ≈16 W/(m·K). Daraus ergibt sich ein Wärmekreisradius (Gl. 6.8) von

$$\delta \approx \sqrt{\frac{2 \cdot 12 \frac{W}{m^2 K}}{16 \frac{W}{m K} \cdot 0,0016 m}} \approx 30 \text{ mm}$$

Das ist ungefähr der Abstand von der Bauteilmitte bis zum Ende der grünen Kontur im Top-Bild von Tabelle 7.5.

 $\Delta T \approx 22 \text{ K}$

- Die Übertemperatur des simulierten Bauteils beträgt 42 °C bis 20 °C:
 - Simulation:
 - Nach Bild 6.7 (blaue Kurve bei $r \approx 5$ mm): $\Delta T \approx 16$ K
- Die Ergebnisse von Gl. 6.9 mit $r_0 = 5$ mm, $\lambda = 16$ W/(m·K), $\alpha = 12$ W/(m²K), D = 1,6 mm sind für die Leiterplattendimensionen einmal über die Länge und einmal über die Breite:

$$R = \frac{53 \text{ mm}}{2} = 26 \text{ mm}: \qquad \Delta T \approx 28 \text{ K}$$
$$R = \frac{100 \text{ mm}}{2} = 50 \text{ mm}: \qquad \Delta T \approx 13 \text{ K}$$

Diese Schätzungen passen im Rahmen der unterschiedlichen Ansätze größenordnungsmäßig zueinander.

7.1.3 EVB-USB580x_A

Das EVB-USB5806 ist eine Demonstrations- und Evaluierungsplattform der MICROCHIP TECHNOLOGY INC. Sie stellt die notwendigen Anforderungen und Schnittstellenoptionen für die Evaluierung des USB5806-Bauteils bereit, eines 6-Port SS/HS USB Smart Hub auf einer 4-lagigen Leiterplatte [7.5] (Tabelle 7.6). Das Board ist eines der Standardbeispiele einer ALTIUM DESIGNER Installation [7.6]. Um den zentralen U1 (USB5807/06 im Gehäuse eines 100-pin QFN) gehen die Leiterbahnen radial nach außen. Unter U1 liegt ein Cu Pad, das zum internen Heat Slug passt. Das Bohrfeld hat nur Kontakt zu GND (s. a. Abschnitt 8.2.1). In den Lagen Internal2 und Bottom begrenzen Potenzialtrenner die Wärmespreizung um U1.

Lagen	4	51 / 36 / 36 / 51 \rightarrow 4 x 36
Größe	127 mm x 76 mm	Bestückung einseitig auf Top
Gesamtdicke	1,6 mm	
Wärmequelle	Heat slug 6,8 x 6,8 mm 1 W	U1: 10 x 10 mm

Tabelle 7.6 Steckbrief des Boards EVB-USB580x_A

Tabelle 7.6 Steckbrief des Boards EVB-USB580x_A – Fortsetzung

 Tabelle 7.7
 Berechnete Thermogramme aus dem EVB-USB580x_A Modell

Das rechteckige Muster aus roten Punkten unter U1 im Thermogramm von Bottom sind die PTH-Bohrungen, die nur in Internal1 mit GND Kontakt haben. U1 kann also Wärme in GND abführen. Auf Internal2 und Bottom sind die Bohrungen isoliert und ohne Abfluss von Wärme. Letztlich haben die PTH auf Bottom fast die Temperatur des Bauteils, nicht weil sie Wärme gut abführen, sondern weil sie Wärme schlecht abführen. Mit einem numerischen Modell kann man gut testen, welchen quantitativen Einfluss die Vias haben (s. Abschnitt 8.2.1).

7.2 Orthotrope Wärmeleitfähigkeit II

Ob das Konzept der orthotropen Wärmeleitfähigkeit brauchbar ist, kann man ebenfalls durch Simulation quantifizieren. Zuerst muss man die orthotropen Werte eines realen Layouts bestimmen und dann anwenden.

1. Bestimmung der orthotropen Werte. Nach Gl. 5.2 ist die Wärmeleitfähigkeit eines isolierten Balkens

$$\lambda = \frac{\dot{Q} \cdot \ell}{A \cdot \Delta T}$$
Gl. 7.1

21 Layout und Konstruktion – Hinweise und Erfahrungen

Wie schon an anderer Stelle erwähnt, sind alle Konstruktionen von Leiterplatten und LP-Baugruppen sowie die von Geräten individuelle kundenspezifische Lösungen. Daher ist es unmöglich, dafür Patentrezepte zu erstellen. Im Folgenden können nur allgemeine Hinweise und Anregungen für eigene Aufbauten gegeben werden.

21.1 Wärmeableitung

Bereits in Bild 16.1 wurde gezeigt, dass die Wärmeabfuhr aus SMDs hauptsächlich über die Leiterplatte erfolgt und dass dabei den Leiterzügen aus Kupfer eine wesentliche Bedeutung zukommt, was die in Bild 21.1 dargestellten Isothermen im Umfeld des aufgeheizten SMD-Chips bestätigen.

Bild 21.1 Isothermen der Wärmeabfuhr aus einem SMD-Chip (nach Vorlage aus [16.2])

Wie weitere Untersuchungen der Fa. Beyschlag ergeben haben, bewirkt schon eine unter dem Chip kreuzende Leitung eine verbesserte Wärmeabfuhr [16.2]. Eine solche Anordnung befindet sich am untersten Bauteil in Bild 21.2. Eine wesentlich bessere Kühlung wird durch Vergrößerung der Pads erreicht (Bild 21.2). Die Vergrößerung der Pad-Fläche ohne weitere Maßnahmen kann fatale Folgen haben: 2-polige Bauteile auf zu großen Pads neigen dazu sich zu drehen – je nach Pad- und Chip-Abmessungen sind bis ca. 70° möglich (Bild 21.4). Bei zu großen Winkeln wird das nicht von IPC-A-610 akzeptiert. Als Abhilfe kann das zu große Kupferpad so mit Lötstopplack abgedeckt werden, dass ein regelkonformes Lötpad frei bleibt.

Bild 21.1 zeigt die weit ausladenden Isothermen eines einzelnen Widerstandes. Es ist leicht nachvollziehbar, dass mehrere benachbarte Bauteile auf einer Leiterplatte, die sich in gleicher Weise aufheizen, deutlich höhere Temperaturen erzeugen als ein einzelner Chip, egal ob es sich um Widerstände oder Halbleiter handelt.

Bild 21.2 Abführbare Leistung in Abhängigkeit von der Leiterbreite bei einer Lötstellentemperatur von 110 °C. Bei der Messung wurde jeweils nur ein Bauteil mit der angegebenen Verlustleistung betrieben. Die Dicke der Cu-Schicht auf der einseitigen FR4-Platte beträgt 35 µm. Da die Untersuchungen noch zu Zeiten der Verwendung von Zinn-Blei-Loten erfolgten, lag der Referenzwert der Lötstellentemperatur nur bei 110 °C. (aus [16.2]).

2*	2 alea 200 mW	
		and manual in
3*3	3 240 mW	and some
w=0.3 < 2*2	- art160 mW	TTO BELLEVILLE
1.	an: -150 mW	The state

Bild 21.3 Ausschnitt aus Bild 21.2. Bei gleicher Breite der Leitungen, aber größeren Pads kann eine größere Verlustleistung abgeführt werden.

Von Yageo stammt das Nomogramm in Bild 21.5, mit dessen Hilfe die zulässige Bestückungsdichte in Abhängigkeit von der Umgebungstemperatur, der zulässigen Lötstellentemperatur und der Verlustleistung der Bauteile bestimmt werden kann. Zum Aufbau der verwendeten Leiterplatte liegen leider keine Angaben vor, sodass die aus dem Nomogramm abgelesenen Daten für die individuelle Baugruppe nur als Orientierungswerte angesehen werden können. Bild 21.6 zeigt zwei Bestück-Beispiele, die auf den Daten aus Bild 21.5 beruhen. Sie veranschaulichen die Konsequenzen aus den abgelesenen Daten.

Bild 21.5 Nomogramm zur Bestimmung der maximalen Bauteile-Dichte (Grafik nach [21.1])

Die Pfeile in Bild 21.5 geben den Ableseweg an: Von der vorgegebenen Lötstellentemperatur (grüne Parameterlinien) zum Schnittpunkt mit der gegebenen Umgebungstemperatur (blaue Parameterlinien) zur Verlustleistungskurve.

Die roten Linien verdeutlichen das folgende Ablese-Beispiel: Für Chips bei 110°C Lötstellen, 50 °C Umgebungstemperatur und bei 250 mW Verlustleistung ergeben sich 12 Chips auf 25 cm². Bei 125 mW können 25 (rote und orange Linie) und bei 63 mW 48 (rote und braune Linie) auf der gleichen Fläche platziert werden. Sind 140 °C Lötstellentemperatur zulässig, dann darf für die gleiche Anzahl Bauteile die Umgebungstemperatur 80 °C betragen (Start mit violetter Linie).

Bild 21.6 Anwendung der Nomogramm-Werte aus Bild 21.5. Bestückungsbeispiele für Chips (gezeichnete Baugröße 1206) mit jeweils 63 bzw. 250 mW Verlustleistung, 110 °C Lötstellen- und 50 °C Umgebungstemperatur. Die gleichen Grafiken gelten auch für die Kombination mit 140 °C Lötstellen- und 80 °C Umgebungstemperatur

In Unterlagen der Fa. Freescale werden die verschiedenen zu erwartenden thermischen Widerstände für die Montage eines QFNL-Kunststoff-Gehäuses auf verschiedenen Leiterplatten angegeben [21.2]. In der Legende zu Bild 21.7 sind Werte für die einzelnen Wärmeleitungswege angegeben. Beachtenswert ist, dass der Wärmewiderstand zur Oberfläche des Plastik-Gehäuses recht hoch ist, dass also auf diesem Wege keine sinnvolle Kühlung erzielt werden kann. Die Bilder 21.8 bis 21.10 machen Angaben zu zwei Leiterplattentypen und zusätzlicher Zwangsbelüftung. Hier zeigt sich, dass die Kühlung über einen Multilayer (mit möglichst vielen Kupferlagen) die größte Wirkung hat.

Bild 21.7 QFN-Gehäuse, betrachtet unter dem Aspekt Wärmewiderstände. Es ist $R_{thJC} = 0,8$ K/W, $R_{thJPT} = 14,4$ K/W, $R_{thJB} = 7$ K/W.

Bild 21.8 QFN-Gehäuse auf einlagiger Leiterplatte, R_{thJA} = 74 K/W

Bild 21.9 QFN-Gehäuse auf 4-Lagen-Multilayer, R_{thJA} = 28 K/W

Bild 21.10 QFN-Gehäuse auf 4-Lagen-Multilayer mit Luftstrom: R_{thJA} = 23 K/W

Bild 21.11 Kühlflächen für Transistoren im SOT-223-Gehäuse, Philips- bzw. NXP-Vorschläge auf eine Industrie-Leiterplatten-Baugruppe projiziert. Die dafür angegebenen Verlustleistungen betragen 850 mW (blau schraffiert, 150 K/W) bzw. 1,25 W (gelb schraffiert, 100 K/W)

Manche Bauteilhersteller veröffentlichen Vorschläge zur Kühlung der Halbleiter über die Leiterplatte (Bild 21.11). Allerdings ist es bei dicht bestückten Leiterplatten-Baugruppen illusorisch, derart große Flächen für die Kühlung freizuhalten. Weniger platzbedürftig, aber dafür mit günstigerem Kühlungsverhalten sind SMD-Kühlkörper (Bild 21.12). Es gibt verschiedene Abmessungen, je nach Kühlbedarf und Abmessungen des zu kühlenden Bauteils (Transistor, IC etc.). Das für den Transistorflansch oder die Kühlfläche des IC vorhandene Kupferpad muss so vergrößert werden, dass auch der Kühlkörper darauf verlötet und dadurch thermisch angeschlossen werden kann (Bild 21.13). Die SMD-Kühlkörper sind aus Kupfer mit lötfähiger Oberfläche und werden gegurtet zum maschinellen Bestücken geliefert. Zum Bestimmen des effektiven Wärmewiderstandes muss man zusätzlich zum angegebenen Wert noch den layoutabhängigen Beitrag des Wegs zwischen Bauteil und Montageposition des Kühlkörpers sowie zur Einbauumgebung berücksichtigen. Aufgrund der Größe und Höhe sind diese Bauteile ohne zusätzliche Befestigungsmaßnahmen nicht rüttelfest.

Bild 21.12 Beispiele von SMD-Kühlkörpern – Katalogangaben (www.fischerelektronik.de)

Bild 21.13 SMD-Kühlkörper mit zu kühlendem Transistor auf gemeinsamer Kupferfläche.

Tipp zu Katalog-Angaben für Kühlkörper:

Für alle als Katalog-Ware vertriebenen Kühlkörper geben die Hersteller Werte für den Wärmewiderstand. Die Randbedingungen und der Messaufbau werden in aller Regel nicht angegeben. Man kann aber davon ausgehen, dass so gemessen wird, dass möglichst niedrige Wärmewiderstände erreicht werden. Das bedeutet, dass bei jeder Anwendung der von der Umgebung und der Einbauposition abhängige effektive Wärmewiderstand ermittelt bzw. die Wirksamkeit der Kühlung überprüft werden muss.

Bisweilen findet man Vorschläge, die Kühlung von Leistungsbauteilen im DPAK- oder D²PAK-Gehäuse über eine thermisch wirksame Brücke vom Kunststoffgehäuse (Polyamid) zu einem metallischen Deckel zu verbessern (Bild 21.14). Dabei ist der Wärmewiderstand zwischen Halbleiter und Flansch rund zwei Zehnerpotenzen niedriger als der zwischen Halbleiter und Oberfläche des Kunststoffgehäuses. Vermutlich verleitet das Ergebnis einer «Temperaturmessung» mit der Fingerspitze dazu. Der Finger hat selbst einen relativ hohen Wärmewiderstand und trägt dadurch wenig zur Wärmeabfuhr bei. Daher ergibt sich an der Schnittstelle Bauteil-Finger eine hohe Temperatur. Wird dagegen ein guter Wärmeübergang z. B. zu einem Gehäuse-Teil realisiert, so fällt die Temperatur an der Oberfläche des Kunststoffgehäuses stark ab, so dass bedingt durch den hohen inneren Wärmewiderstand kaum Wärmeenergie abfließt.

Bild 21.14 Schnitt durch D²PAK-Gehäuse und Abschätzung der interessanten thermischen Widerstände

Bei bedrahteten Bauteilen spielt die Leiterplatte beim Thema Kühlung nur eine untergeordnete Rolle. Wenn bei diesen Bauteilen die Erwärmung durch die Verlustleistung unzulässig ansteigt, muss das Bauteil an einem Kühlkörper oder an einem Gehäuse so befestigt werden, dass darüber ausreichend Wärme abgeführt werden kann (vgl. Bilder 18.16 und 21.20). Das soll an einem einfachen Model betrachtet werden: Transistor mit Isolierscheibe (z. B. «SIL-Pad») auf Fingerkühlkörper (Bild 21.15).

Bild 21.15 Transistor im TO-220-Gehäuse

Der weiche Silikon-Gummi dient nicht nur der elektrischen Isolierung, sondern gleicht Unebenheiten und bedingt auch Oberflächenrauigkeit aus. Das verringert die «Luftzwischenlagen» und verbessert dadurch den Wärmeübergang. Der Einfluss der unvermeidbaren Oberflächenrauigkeit kann aber nicht ganz beseitigt werden. Die Rautiefe einer Oberfläche wird als arithmetischer Mittelwert vieler Messwerte $Z_1 \dots Z_n$ bestimmt, die entlang je einer Messstrecke gemessen wurden (Bild 21.16). Für verschiedene Bearbeitungsverfahren gibt es Erfahrungswerte der zu erwartenden Werte:
 Druckguss:
 10 ... 100 μm

 fräsen:
 10 ... 63 μm

 schleifen:
 1 ... 6 μm

Bild 21.16 Beispiel eines Rautiefe-Messprotokolls

Bild 21.17 Schnitt durch zwei aufeinander gesetzte raue Oberflächen

Legt man z. B. einen Transistor-Kühlflansch mit einer Oberfläche wie in Bild 21.16 dargestellt auf einen Kühlkörper vergleichbarer Rauigkeit und betrachtet eine Schnittebene orthogonal zu den rauen Oberflächen, so ergibt sich ein Gebilde wie in Bild 21.17 dargestellt. Die gelben Flächen symbolisieren die Luftspalte zwischen der grauen und der schwarzen Oberfläche. In der Realität hat man dreidimensionale Gebilde und stülpt ein «Gebirge» kopfüber auf ein anderes.

Bild 21.18 Fingerkühlkörper mit einem Wärmewiderstand von 16 K/W (links) bzw. 12 K/W (rechts) laut Datenblatt (www.fischerelektronik.de)

Im Beispiel in Bild 21.19 ergibt sich ein Temperaturgefälle wie am Thermometer dargestellt. Es ist leicht zu erkennen, dass aus Sicht der Wärmeabfuhr der Übergang Kühlkörper–Luft (Wärmewiderstand R_{thka}) die Schwachstelle darstellt und der Wärmewiderstand von 0,3 K/W des Silikon-Pads nur einen vergleichsweise geringen Einfluss hat. Eine weitere, wenn auch geringe Senkung des Wärmewiderstands zwischen Bauteilflansch und Kühlkörper kann durch zusätzlichen Einsatz von Wärmeleitpaste erreicht werden.

R_{thka}: zwischen Kühlkörper und Umgebungsluft.

^{#)} angegebener Wert bei Anpressen mit 7 N, verringert sich auf 0,1 K/W bei 14 N Druck, die indizierten Temperaturen sind dann ein Grad niedriger

Bei den häufig eingesetzten Kühlkörpern aus Strangpressprofilen spielt nicht nur die Höhe oder die Anzahl der Fins (Rippen) eine Rolle, wie am Beispiel zweier recht ähnlich aussehender Profile zu erkennen ist (Bilder 21.20 und 21.21). Der Vorteil von Profil «blau» ist der größere Querschnitt im unteren Bereich, der für eine bessere Wärmeverteilung über die Länge des Profils sorgt. Aus dem Diagramm in Bild 20.21 ist auch zu ersehen, dass es wenig sinnvoll ist, solche Kühlkörper für einzelne Bauteile allzu lang zu machen, da die Kurve mit zunehmender Länge asymptotisch gegen einen Grenzwert strebt.

Bild 21.20 Vergleich zweier Kühlkörper aus Strangpressprofilen: Profil «blau» links und «rot» rechts. Die Bilder stammen aus dem Herstellerkatalog, d.h. die dargestellten Halbleiter sind nur symbolisch. Der Messaufbau ist für beide gleich. (www.fischerelektronik.de)

Während an Kühlkörpern ähnlich den in Bild 21.18 gezeigten in jeder Lage eine ausreichende Luftströmung stattfinden kann und daher der Wärmewiderstand weitgehend lageunabhängig ist, müssen Kühlkörper wie in Bild 21.20 so eingebaut werden, dass die Fins senkrecht stehen, um den angegebenen Wärmewiderstand zu erreichen.

Es ist aber auch eine beliebige Einbaulage möglich, wenn eine adäquate Zwangsbelüftung stattfindet.